Partial Differential Equations (WBMA 008-05)
Representative exam problems

University of Groningen

Instructions

1. The use of calculators is not allowed. It is allowed to use a “cheat sheet” (one sheet A4,
handwritten, wet ink, both sides).

2. All answers need to be accompanied with an explanation or a calculation: only answering

(X3 2 <

yes”, “no”, or “42” is not sufficient.

Problem 1

Consider the following nonuniform transport equation:

du 2 0u

T 0, u(0,x)=cos(x).

(a) Compute all characteristic curves; express the answer in the form x = x(¢).

(b) Determine the region D of the (¢,x)-plane in which the solution is determined by the initial
condition.

(c) Compute the solution in the region D.
Problem 2
Compute the real Fourier coefficients a; and by for 2-periodic extension of the following function:
fi-L1] =R, flx)=1-x%
Problem 3
Use the d’ Alembert formula to solve the wave equation
Uy = dty,, —o0<x<oo, >0,
with initial conditions u(0,x) = e and 1;(0,x) = xe™* .

Problem 4

Consider the following damped wave equation with 0 < a < c:

%u za_zu du

2= 90 —2a§, u(t,0) = u(t,m) =0.

Determine all nontrivial solutions of the form u(z,x) = w(t)v(x).
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Problem 5
(a) Show that u(x,y) = e’ cos(x) is a harmonic function.

(b) Compute the maximum and minimum values of u on [—57, 5] X [—1,1].

T
(c) Compute the integral / e cos(cost)dt.
.

Problem 6

Compute the Green’s function for the following boundary value problem:

%(Hlxz%):f(x), u(0)=0, u(1)=0.

Problem 7

Recall the following function:

Go(w.:&,1) =~ og] (x.3) ~ (&)l

where || - || denotes the Euclidean norm. Use this function and the method of images to construct
the Green’s function for Poisson’s equation on the domain Q = {(x,y) € R? : y > x}.

Problem 8

Consider the following equation for —eo < x < oo and ¢ > 0:

0’u  _du du
W +2§ = —u, M(O,X) = f(X), E(Oﬂc) = g(X)

Use Fourier transforms to solve this equation; express the final answer u(¢,x) in terms of the
functions f and g.

End of test
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Solution of problem 1

(a) The characteristic curves are found by solving the equation dx/dt = 1 + x?. Separation of
variables gives

1
/ dx = / dt andthus arctan(x) =1 +k,
1 +x2

where k € R is an arbitrary constant. By inverting the arctan function we can express the
characteristic curves as follows:

t+— (t,tan(r + k)).

(b) Along a characteristic curve the solution u is constant. To determine the value of this constant
we need to use the initial condition and that is only possible when the characteristic curve
intersects the x-axis.

Note that the characteristic curves intersect the x-axis if and only if —%7[ <k< %7‘[ This
means that the solution u(z,x) is only determined by the initial condition in the region

D= |J {(tan(t+k) 1€ (-n/2,m/2)}.

ke(—m/2,m/2)
Alternatively, we can write this region in the following simpler form:

D={(t,x) € R? : —1m+arctan(x) <t < 37 +arctan(x) }.
(c) Method 1. In the region D the solution is given by
u(t,x) = cos(B~1(B(x) —1)) = cos(tan(arctan(x) —)).

Method 2. Assume that (7,X) € D. Observe that this point lies on the characteristic curve
with k = arctan(x) — 7. This curve intersects the x-axis in the point (0, tan(arctan(x) —7)).
Since solutions are constant along the characteristic curve we have

u(f,X) = u(0,tan(arctan(x) — 7)) = cos(tan(arctan(x) —7)).

Dropping the bars gives the desired expression.

Solution of problem 2

The Fourier coefficients are given by
1 4
aop :/ fx)dx= -,
1 3
: k14
o = /_1 Fx) os(kma)dx = (~ 1)1,

1
by = /_ F(@)sin(k2) dx = 0.
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Solution of problem 3

The formula of d’ Alembert with ¢ =2, f(x) = e, and g(x) = xe ¥ gives

fx—ct)+ flx+ct) 1 /H“
t,x)= — d
u(t,x) > T3 . 8(z)dz
—(x=21)% —(x+21)? X2t
e +e 1 2
= + - ze” © dz
2 4 Jx—2t
e—(x—Zt)2 + e—(x+2t)2 1 1 2 x+2t
= +-|—ze€
2 4 2 2t
e—(x—2t)2 +e—(x+2t)2 e—(x+2t)2 _ e—(x—21)2
2 - 8
56—(x—2t)2 4+ 36_(x+2t)2
- 8

Solution of problem 4
Substituting the ansatz u(z,x) = w(t)v(x) in the equation gives
w' (1) +2aw'(t)  V'(x)
2w(r) ov(x)

Since the variables ¢ and x are independent this equality can only hold if both sides are constant.
Hence, we obtain the equations

w (1) +2aw' (t) —2Aw(t) =0 and V'(x) — Av(x) = 0.

In addition, we have the boundary conditions v(0) = v(x) = 0.

We now distinguish between three different cases.

e If A = ? > 0, then v(x) = acosh(wx) + bsinh(wx) but the boundary conditions imply
that @ = b = 0. So in this case we only obtain trivial solutions.

e If L =0, then v(x) = a -+ bx but the boundary conditions imply that a = b = 0. So in this
case we only obtain trivial solutions.

e If L = —w? < 0, then v(x) = acos(wx) + bsin(wx). The boundary conditions then imply
that a = 0 and bsin(@x) = 0. In order to obtain nontrivial solutions, we conclude that
w=keN.

For A = —k? with k € N we get the following equation:
w” (1) +2aw' (t) + K2c*Aw(r) = 0.

Trying a solution of the form w(t) = et gives u? +2au +k*c?> = 0. Since we have assumed
that 0 < a < ¢ we get the solutions

U= —axivk??—a?.
Finally, we conclude that the nontrivial solutions of the damped wave equation are given by
u(t,x) = e~ cos (\/ﬂt) sin(kx)
up(t,x) = e “sin (\/IWI) sin(kx),

where k € N.
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Solution of problem 5

(a) A straightforward computation shows that uy, + u,, = 0, which means that u is harmonic.
(b) Since u is harmonic on the domain Q = [—17, 17] x [1, 1] the maximum and minimum

value is attained on the boundary of Q; these values are e and 0, respectively.

(c) For a harmonic function we have the mean value property:
1 T
—/ w(a+reos(t), b+ rsin(r))rdt = u(a,b).
2nr -

In words: the average value of u computed over a circle of radius r equals the value of u at
the midpoint of that circle. This immediately implies that

T
/ e cos(cost)dt = 2mu(0,0) = 2.
—7T

Solution of problem 6
Setting p(x) = 1/(1+x?) we can write the differential equation as L[u] = f where
Llu] = (pu')' = pu" + p'ul.
The general solution of the homogeneous differential equation L{u] = 0 is
b
u(x) =a+bx+ §x3,

where a,b € R are arbitrary constants. Note that the solution u; (x) = 3x 4 x> satisfies u (0) = 0
and that the solution uy (x) = —4 + 3x 4 x> satisfies u,(1) = 0. Take the following ansatz for the
Green’s function:

G( 5) C]Ll](x) lf()gxgégl,
xX;6) =
cuy(x) if0<E<x<1.

Requiring continuity at x = & implies that

couz(8) —crur(§) =0

At x = £ the derivative dG/dx must have a jump discontinuity of magnitude 1/p(&) = 1+ &2,
which implies that
c2uy(§) —cruy(§) = 1482
Therefore, we obtain the following system of equations:
—u1 (&) wa(l)| |e1| 0
—uy (&) wy(8)| |2 |1+&°

Solving gives

o] _ ! b(E) —w@] [ o

&2 T W Eal®) —m (@) [14(&) —wi(8)| |1+
ot [ma+e
“12(1189) [ (§)(1+&Y)
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In conclusion, the Green’s function is given by

12

Gy = ! (Bx+x7)(—4+35+&%) if0<x<§<1,
we)="5 (BE4E)(—4+3x+x7) f0<E<x<I.

General advice: plug in formulas as late as possible to avoid clutter-induced mistakes.

Solution of problem 7

The Green’s function is constructed by setting

G(x,y;6,1m) = Go(x,y;6,1m) +z(x,»:6, 1),
where z is harmonic on Q and satisfies z = —Gg on dQ.

To a point (§,7) € Q we associate an image point (&/,1') € R?\ Q and set

a b
z(x,y:6,m) = glogll(x,y) — (&) oo

This choice guarantees that z is harmonic in Q. Now we have to determine the constants a and b
such that the condition z = —Gg on dQ is satisfied.

The boundary of Q is given by {(x,x) : x € R. If we define (&§',n’) = (n,€), which is the
reflection of (&, 7n) through the line y = x, then we have

1Ge,2) = (8", 0") 1 = Nl (x.x) = (0, §) || = | Ge,x) = (€. )|

for all x € R. This implies that the condition z = —Gy on JdQ is satisfied when a = 1 and b = 0.
Therefore, the Green’s function is given by

Gly: 1) = 5 —og | (5,3) — (&) + 5. Tog | (5.3) — (1.8)]

1 =P+ (p—8)p

an F =&+ (—n)

Solution of problem 8
Taking Fourier transforms gives the following ordinary differential equation:

d*n  _du
42— +4u=0.
dt? + dt tu

The general solution is given by
(r,k) = a(k)e ™" +b(k)re ™.
From the initial conditions we obtain
a(k) = f(k) and b(k)—a(k) = g(k)

and thus R R
u(t,k) = f(k)e™" + (f(k)+g(k))te".

Taking the inverse Fourier transform gives

u(t,x) = f(x)e”" + (f(x) +g(x))re™".
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