
Partial Differential Equations (WBMA008-05)

Representative exam problems

University of Groningen

Instructions

1. The use of calculators is not allowed. It is allowed to use a “cheat sheet” (one sheet A4,
handwritten, wet ink, both sides).

2. All answers need to be accompanied with an explanation or a calculation: only answering
“yes”, “no”, or “42” is not sufficient.

Problem 1

Consider the following nonuniform transport equation:

∂u
∂ t

+(1+ x2)
∂u
∂x

= 0, u(0,x) = cos(x).

(a) Compute all characteristic curves; express the answer in the form x = x(t).

(b) Determine the region D of the (t,x)-plane in which the solution is determined by the initial
condition.

(c) Compute the solution in the region D.

Problem 2

Compute the real Fourier coefficients ak and bk for 2-periodic extension of the following function:

f : [−1,1]→ R, f (x) = 1− x2.

Problem 3

Use the d’Alembert formula to solve the wave equation

utt = 4uxx, −∞ < x < ∞, t > 0,

with initial conditions u(0,x) = e−x2
and ut(0,x) = xe−x2

.

Problem 4

Consider the following damped wave equation with 0 < a < c:

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 −2a
∂u
∂ t

, u(t,0) = u(t,π) = 0.

Determine all nontrivial solutions of the form u(t,x) = w(t)v(x).
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Problem 5

(a) Show that u(x,y) = ey cos(x) is a harmonic function.

(b) Compute the maximum and minimum values of u on [−1
2π, 1

2π]× [−1,1].

(c) Compute the integral
∫

π

−π

esin t cos(cos t)dt.

Problem 6

Compute the Green’s function for the following boundary value problem:

d
dx

(
1

1+ x2
du
dx

)
= f (x), u(0) = 0, u(1) = 0.

Problem 7

Recall the following function:

G0(x,y;ξ ,η) =− 1
2π

log‖(x,y)− (ξ ,η)‖,

where ‖ · ‖ denotes the Euclidean norm. Use this function and the method of images to construct
the Green’s function for Poisson’s equation on the domain Ω = {(x,y) ∈ R2 : y > x}.

Problem 8

Consider the following equation for −∞ < x < ∞ and t > 0:

∂ 2u
∂ t2 +2

∂u
∂ t

=−u, u(0,x) = f (x),
∂u
∂ t

(0,x) = g(x).

Use Fourier transforms to solve this equation; express the final answer u(t,x) in terms of the
functions f and g.

End of test
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Solution of problem 1

(a) The characteristic curves are found by solving the equation dx/dt = 1+ x2. Separation of
variables gives ∫ 1

1+ x2 dx =
∫

dt and thus arctan(x) = t + k,

where k ∈ R is an arbitrary constant. By inverting the arctan function we can express the
characteristic curves as follows:

t 7→ (t, tan(t + k)).

(b) Along a characteristic curve the solution u is constant. To determine the value of this constant
we need to use the initial condition and that is only possible when the characteristic curve
intersects the x-axis.

Note that the characteristic curves intersect the x-axis if and only if −1
2π < k < 1

2π . This
means that the solution u(t,x) is only determined by the initial condition in the region

D =
⋃

k∈(−π/2,π/2)

{
(t, tan(t + k)) : t ∈ (−π/2,π/2)

}
.

Alternatively, we can write this region in the following simpler form:

D =
{
(t,x) ∈ R2 : −1

2π + arctan(x)< t < 1
2π + arctan(x)

}
.

(c) Method 1. In the region D the solution is given by

u(t,x) = cos(β−1(β (x)− t)) = cos(tan(arctan(x)− t)).

Method 2. Assume that (t̄, x̄) ∈ D. Observe that this point lies on the characteristic curve
with k = arctan(x̄)− t̄. This curve intersects the x-axis in the point (0, tan(arctan(x̄)− t̄)).
Since solutions are constant along the characteristic curve we have

u(t̄, x̄) = u(0, tan(arctan(x̄)− t̄)) = cos(tan(arctan(x̄)− t̄)).

Dropping the bars gives the desired expression.

Solution of problem 2

The Fourier coefficients are given by

a0 =
∫ 1

−1
f (x)dx =

4
3
,

ak =
∫ 1

−1
f (x)cos(kπx)dx = (−1)k+1 4

k2π2 ,

bk =
∫ 1

−1
f (x)sin(kπx)dx = 0.
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Solution of problem 3

The formula of d’Alembert with c = 2, f (x) = e−x2
, and g(x) = xe−x2

gives

u(t,x) =
f (x− ct)+ f (x+ ct)

2
+

1
2c

∫ x+ct

x−ct
g(z)dz

=
e−(x−2t)2

+ e−(x+2t)2

2
+

1
4

∫ x+2t

x−2t
ze−z2

dz

=
e−(x−2t)2

+ e−(x+2t)2

2
+

1
4

[
− 1

2
e−z2

]x+2t

x−2t

=
e−(x−2t)2

+ e−(x+2t)2

2
− e−(x+2t)2− e−(x−2t)2

8

=
5e−(x−2t)2

+3e−(x+2t)2

8
.

Solution of problem 4

Substituting the ansatz u(t,x) = w(t)v(x) in the equation gives

w′′(t)+2aw′(t)
c2w(t)

=
v′′(x)
v(x)

.

Since the variables t and x are independent this equality can only hold if both sides are constant.
Hence, we obtain the equations

w′′(t)+2aw′(t)− c2
λw(t) = 0 and v′′(x)−λv(x) = 0.

In addition, we have the boundary conditions v(0) = v(π) = 0.

We now distinguish between three different cases.

• If λ = ω2 > 0, then v(x) = acosh(ωx)+bsinh(ωx) but the boundary conditions imply
that a = b = 0. So in this case we only obtain trivial solutions.

• If λ = 0, then v(x) = a+bx but the boundary conditions imply that a = b = 0. So in this
case we only obtain trivial solutions.

• If λ =−ω2 < 0, then v(x) = acos(ωx)+bsin(ωx). The boundary conditions then imply
that a = 0 and bsin(ωπ) = 0. In order to obtain nontrivial solutions, we conclude that
ω = k ∈ N.

For λ =−k2 with k ∈ N we get the following equation:

w′′(t)+2aw′(t)+ k2c2
λw(t) = 0.

Trying a solution of the form w(t) = eµt gives µ2 +2aµ + k2c2 = 0. Since we have assumed
that 0 < a < c we get the solutions

µ =−a± i
√

k2c2−a2.

Finally, we conclude that the nontrivial solutions of the damped wave equation are given by

uk(t,x) = e−at cos
(√

k2c2−a2t
)

sin(kx)

uk(t,x) = e−at sin
(√

k2c2−a2t
)

sin(kx),

where k ∈ N.
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Solution of problem 5

(a) A straightforward computation shows that uxx +uyy = 0, which means that u is harmonic.

(b) Since u is harmonic on the domain Ω = [−1
2π, 1

2π]× [−1,1] the maximum and minimum
value is attained on the boundary of Ω; these values are e and 0, respectively.

(c) For a harmonic function we have the mean value property:
1

2πr

∫
π

−π

u(a+ r cos(t),b+ r sin(t))r dt = u(a,b).

In words: the average value of u computed over a circle of radius r equals the value of u at
the midpoint of that circle. This immediately implies that∫

π

−π

esin t cos(cos t)dt = 2π u(0,0) = 2π.

Solution of problem 6

Setting p(x) = 1/(1+ x2) we can write the differential equation as L[u] = f where

L[u] = (pu′)′ = pu′′+ p′u′.

The general solution of the homogeneous differential equation L[u] = 0 is

u(x) = a+bx+
b
3

x3,

where a,b ∈ R are arbitrary constants. Note that the solution u1(x) = 3x+ x3 satisfies u1(0) = 0
and that the solution u2(x) =−4+3x+ x3 satisfies u2(1) = 0. Take the following ansatz for the
Green’s function:

G(x;ξ ) =

{
c1u1(x) if 0≤ x≤ ξ ≤ 1,
c2u2(x) if 0≤ ξ ≤ x≤ 1.

Requiring continuity at x = ξ implies that

c2u2(ξ )− c1u1(ξ ) = 0

At x = ξ the derivative ∂G/∂x must have a jump discontinuity of magnitude 1/p(ξ ) = 1+ξ 2,
which implies that

c2u′2(ξ )− c1u′1(ξ ) = 1+ξ
2.

Therefore, we obtain the following system of equations:[
−u1(ξ ) u2(ξ )

−u′1(ξ ) u′2(ξ )

][
c1

c2

]
=

[
0

1+ξ 2

]
.

Solving gives [
c1

c2

]
=

1
u′1(ξ )u2(ξ )−u1(ξ )u′2(ξ )

[
u′2(ξ ) −u2(ξ )

u′1(ξ ) −u1(ξ )

][
0

1+ξ 2

]

=
1

−12(1+ξ 2)

[
u2(ξ )(1+ξ 2)

u1(ξ )(1+ξ 2)

]

=− 1
12

[
u2(ξ )

u1(ξ )

]
.
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In conclusion, the Green’s function is given by

G(x;ξ ) =− 1
12
·

{
(3x+ x3)(−4+3ξ +ξ 3) if 0≤ x≤ ξ ≤ 1,
(3ξ +ξ 3)(−4+3x+ x3) if 0≤ ξ ≤ x≤ 1.

General advice: plug in formulas as late as possible to avoid clutter-induced mistakes.

Solution of problem 7

The Green’s function is constructed by setting

G(x,y;ξ ,η) = G0(x,y;ξ ,η)+ z(x,y;ξ ,η),

where z is harmonic on Ω and satisfies z =−G0 on ∂Ω.

To a point (ξ ,η) ∈Ω we associate an image point (ξ ′,η ′) ∈ R2 \Ω and set

z(x,y;ξ ,η) =
a

2π
log‖(x,y)− (ξ ′,η ′)‖+ b

2π
.

This choice guarantees that z is harmonic in Ω. Now we have to determine the constants a and b
such that the condition z =−G0 on ∂Ω is satisfied.

The boundary of Ω is given by {(x,x) : x ∈ R. If we define (ξ ′,η ′) = (η ,ξ ), which is the
reflection of (ξ ,η) through the line y = x, then we have

‖(x,x)− (ξ ′,η ′)‖= ‖(x,x)− (η ,ξ )‖= ‖(x,x)− (ξ ,η)‖

for all x ∈ R. This implies that the condition z =−G0 on ∂Ω is satisfied when a = 1 and b = 0.
Therefore, the Green’s function is given by

G(x,y;ξ ,η) =− 1
2π

log‖(x,y)− (ξ ,η)‖+ 1
2π

log‖(x,y)− (η ,ξ )‖

=
1

4π
log

(x−η)2 +(y−ξ )2

(x−ξ )2 +(y−η)2 .

Solution of problem 8

Taking Fourier transforms gives the following ordinary differential equation:

d2û
dt2 +2

dû
dt

+ û = 0.

The general solution is given by

û(t,k) = â(k)e−t + b̂(k)te−t .

From the initial conditions we obtain

â(k) = f̂ (k) and b̂(k)− â(k) = ĝ(k)

and thus
û(t,k) = f̂ (k)e−t +( f̂ (k)+ ĝ(k))te−t .

Taking the inverse Fourier transform gives

u(t,x) = f (x)e−t +( f (x)+g(x))te−t .
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