Partial Differential Equations (WBMA008-05)

Representative exam problems

University of Groningen

Instructions

- 1. The use of calculators is *not* allowed. It is allowed to use a "cheat sheet" (one sheet A4, handwritten, wet ink, both sides).
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.

Problem 1

Consider the following nonuniform transport equation:

$$\frac{\partial u}{\partial t} + (1+x^2)\frac{\partial u}{\partial x} = 0, \quad u(0,x) = \cos(x).$$

- (a) Compute *all* characteristic curves; express the answer in the form x = x(t).
- (b) Determine the region D of the (t,x)-plane in which the solution is determined by the initial condition.
- (c) Compute the solution in the region *D*.

Problem 2

Compute the real Fourier coefficients a_k and b_k for 2-periodic extension of the following function:

$$f: [-1,1] \to \mathbb{R}, \quad f(x) = 1 - x^2.$$

Problem 3

Use the d'Alembert formula to solve the wave equation

$$u_{tt} = 4u_{xx}, \quad -\infty < x < \infty, \quad t > 0,$$

with initial conditions $u(0,x) = e^{-x^2}$ and $u_t(0,x) = xe^{-x^2}$.

Problem 4

Consider the following damped wave equation with 0 < a < c:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} - 2a \frac{\partial u}{\partial t}, \quad u(t,0) = u(t,\pi) = 0.$$

Determine all nontrivial solutions of the form u(t,x) = w(t)v(x).

Problem 5

- (a) Show that $u(x,y) = e^y \cos(x)$ is a harmonic function.
- (b) Compute the maximum and minimum values of u on $[-\frac{1}{2}\pi, \frac{1}{2}\pi] \times [-1, 1]$.
- (c) Compute the integral $\int_{-\pi}^{\pi} e^{\sin t} \cos(\cos t) dt$.

Problem 6

Compute the Green's function for the following boundary value problem:

$$\frac{d}{dx}\left(\frac{1}{1+x^2}\frac{du}{dx}\right) = f(x), \quad u(0) = 0, \quad u(1) = 0.$$

Problem 7

Recall the following function:

$$G_0(x, y; \xi, \eta) = -\frac{1}{2\pi} \log ||(x, y) - (\xi, \eta)||,$$

where $\|\cdot\|$ denotes the Euclidean norm. Use this function and the method of images to construct the Green's function for Poisson's equation on the domain $\Omega = \{(x,y) \in \mathbb{R}^2 : y > x\}$.

Problem 8

Consider the following equation for $-\infty < x < \infty$ and t > 0:

$$\frac{\partial^2 u}{\partial t^2} + 2\frac{\partial u}{\partial t} = -u, \quad u(0, x) = f(x), \quad \frac{\partial u}{\partial t}(0, x) = g(x).$$

Use Fourier transforms to solve this equation; express the final answer u(t,x) in terms of the functions f and g.

Solution of problem 1

(a) The characteristic curves are found by solving the equation $dx/dt = 1 + x^2$. Separation of variables gives

$$\int \frac{1}{1+x^2} dx = \int dt \quad \text{and thus} \quad \arctan(x) = t + k,$$

where $k \in \mathbb{R}$ is an arbitrary constant. By inverting the arctan function we can express the characteristic curves as follows:

$$t \mapsto (t, \tan(t+k)).$$

(b) Along a characteristic curve the solution u is constant. To determine the value of this constant we need to use the initial condition and that is only possible when the characteristic curve intersects the x-axis.

Note that the characteristic curves intersect the *x*-axis if and only if $-\frac{1}{2}\pi < k < \frac{1}{2}\pi$. This means that the solution u(t,x) is only determined by the initial condition in the region

$$D = \bigcup_{k \in (-\pi/2, \pi/2)} \{ (t, \tan(t+k)) : t \in (-\pi/2, \pi/2) \}.$$

Alternatively, we can write this region in the following simpler form:

$$D = \{(t, x) \in \mathbb{R}^2 : -\frac{1}{2}\pi + \arctan(x) < t < \frac{1}{2}\pi + \arctan(x)\}.$$

(c) Method 1. In the region D the solution is given by

$$u(t,x) = \cos(\beta^{-1}(\beta(x) - t)) = \cos(\tan(\arctan(x) - t)).$$

Method 2. Assume that $(\bar{t}, \bar{x}) \in D$. Observe that this point lies on the characteristic curve with $k = \arctan(\bar{x}) - \bar{t}$. This curve intersects the *x*-axis in the point $(0, \tan(\arctan(\bar{x}) - \bar{t}))$. Since solutions are constant along the characteristic curve we have

$$u(\bar{t},\bar{x}) = u(0,\tan(\arctan(\bar{x}) - \bar{t})) = \cos(\tan(\arctan(\bar{x}) - \bar{t})).$$

Dropping the bars gives the desired expression.

Solution of problem 2

The Fourier coefficients are given by

$$a_0 = \int_{-1}^1 f(x) dx = \frac{4}{3},$$

$$a_k = \int_{-1}^1 f(x) \cos(k\pi x) dx = (-1)^{k+1} \frac{4}{k^2 \pi^2},$$

$$b_k = \int_{-1}^1 f(x) \sin(k\pi x) dx = 0.$$

Solution of problem 3

The formula of d'Alembert with c = 2, $f(x) = e^{-x^2}$, and $g(x) = xe^{-x^2}$ gives

$$u(t,x) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$$

$$= \frac{e^{-(x-2t)^2} + e^{-(x+2t)^2}}{2} + \frac{1}{4} \int_{x-2t}^{x+2t} z e^{-z^2} dz$$

$$= \frac{e^{-(x-2t)^2} + e^{-(x+2t)^2}}{2} + \frac{1}{4} \left[-\frac{1}{2} e^{-z^2} \right]_{x-2t}^{x+2t}$$

$$= \frac{e^{-(x-2t)^2} + e^{-(x+2t)^2}}{2} - \frac{e^{-(x+2t)^2} - e^{-(x-2t)^2}}{8}$$

$$= \frac{5e^{-(x-2t)^2} + 3e^{-(x+2t)^2}}{8}.$$

Solution of problem 4

Substituting the ansatz u(t,x) = w(t)v(x) in the equation gives

$$\frac{w''(t) + 2aw'(t)}{c^2w(t)} = \frac{v''(x)}{v(x)}.$$

Since the variables t and x are independent this equality can only hold if both sides are constant. Hence, we obtain the equations

$$w''(t) + 2aw'(t) - c^2\lambda w(t) = 0$$
 and $v''(x) - \lambda v(x) = 0$.

In addition, we have the boundary conditions $v(0) = v(\pi) = 0$.

We now distinguish between three different cases.

- If $\lambda = \omega^2 > 0$, then $v(x) = a \cosh(\omega x) + b \sinh(\omega x)$ but the boundary conditions imply that a = b = 0. So in this case we only obtain trivial solutions.
- If $\lambda = 0$, then v(x) = a + bx but the boundary conditions imply that a = b = 0. So in this case we only obtain trivial solutions.
- If $\lambda = -\omega^2 < 0$, then $v(x) = a\cos(\omega x) + b\sin(\omega x)$. The boundary conditions then imply that a = 0 and $b\sin(\omega \pi) = 0$. In order to obtain nontrivial solutions, we conclude that $\omega = k \in \mathbb{N}$.

For $\lambda = -k^2$ with $k \in \mathbb{N}$ we get the following equation:

$$w''(t) + 2aw'(t) + k^2c^2\lambda w(t) = 0.$$

Trying a solution of the form $w(t) = e^{\mu t}$ gives $\mu^2 + 2a\mu + k^2c^2 = 0$. Since we have assumed that 0 < a < c we get the solutions

$$\mu = -a \pm i\sqrt{k^2c^2 - a^2}.$$

Finally, we conclude that the nontrivial solutions of the damped wave equation are given by

$$u_k(t,x) = e^{-at} \cos\left(\sqrt{k^2c^2 - a^2}t\right) \sin(kx)$$

$$u_k(t,x) = e^{-at} \sin\left(\sqrt{k^2c^2 - a^2}t\right) \sin(kx),$$

where $k \in \mathbb{N}$.

Solution of problem 5

- (a) A straightforward computation shows that $u_{xx} + u_{yy} = 0$, which means that u is harmonic.
- (b) Since u is harmonic on the domain $\Omega = [-\frac{1}{2}\pi, \frac{1}{2}\pi] \times [-1, 1]$ the maximum and minimum value is attained on the boundary of Ω ; these values are e and 0, respectively.
- (c) For a harmonic function we have the mean value property:

$$\frac{1}{2\pi r} \int_{-\pi}^{\pi} u(a + r\cos(t), b + r\sin(t))rdt = u(a,b).$$

In words: the average value of u computed over a circle of radius r equals the value of u at the midpoint of that circle. This immediately implies that

$$\int_{-\pi}^{\pi} e^{\sin t} \cos(\cos t) \, dt = 2\pi \, u(0,0) = 2\pi.$$

Solution of problem 6

Setting $p(x) = 1/(1+x^2)$ we can write the differential equation as L[u] = f where

$$L[u] = (pu')' = pu'' + p'u'.$$

The general solution of the homogeneous differential equation L[u] = 0 is

$$u(x) = a + bx + \frac{b}{3}x^3,$$

where $a, b \in \mathbb{R}$ are arbitrary constants. Note that the solution $u_1(x) = 3x + x^3$ satisfies $u_1(0) = 0$ and that the solution $u_2(x) = -4 + 3x + x^3$ satisfies $u_2(1) = 0$. Take the following ansatz for the Green's function:

$$G(x;\xi) = \begin{cases} c_1 u_1(x) & \text{if } 0 \le x \le \xi \le 1, \\ c_2 u_2(x) & \text{if } 0 \le \xi \le x \le 1. \end{cases}$$

Requiring continuity at $x = \xi$ implies that

$$c_2u_2(\xi) - c_1u_1(\xi) = 0$$

At $x = \xi$ the derivative $\partial G/\partial x$ must have a jump discontinuity of magnitude $1/p(\xi) = 1 + \xi^2$, which implies that

$$c_2u_2'(\xi) - c_1u_1'(\xi) = 1 + \xi^2.$$

Therefore, we obtain the following system of equations:

$$\begin{bmatrix} -u_1(\xi) & u_2(\xi) \\ -u'_1(\xi) & u'_2(\xi) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1+\xi^2 \end{bmatrix}.$$

Solving gives

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{u'_1(\xi)u_2(\xi) - u_1(\xi)u'_2(\xi)} \begin{bmatrix} u'_2(\xi) & -u_2(\xi) \\ u'_1(\xi) & -u_1(\xi) \end{bmatrix} \begin{bmatrix} 0 \\ 1 + \xi^2 \end{bmatrix}$$

$$= \frac{1}{-12(1 + \xi^2)} \begin{bmatrix} u_2(\xi)(1 + \xi^2) \\ u_1(\xi)(1 + \xi^2) \end{bmatrix}$$

$$= -\frac{1}{12} \begin{bmatrix} u_2(\xi) \\ u_1(\xi) \end{bmatrix}.$$

In conclusion, the Green's function is given by

$$G(x;\xi) = -\frac{1}{12} \cdot \begin{cases} (3x+x^3)(-4+3\xi+\xi^3) & \text{if } 0 \le x \le \xi \le 1, \\ (3\xi+\xi^3)(-4+3x+x^3) & \text{if } 0 \le \xi \le x \le 1. \end{cases}$$

General advice: plug in formulas as late as possible to avoid clutter-induced mistakes.

Solution of problem 7

The Green's function is constructed by setting

$$G(x, y; \xi, \eta) = G_0(x, y; \xi, \eta) + z(x, y; \xi, \eta),$$

where z is harmonic on Ω and satisfies $z = -G_0$ on $\partial \Omega$.

To a point $(\xi, \eta) \in \Omega$ we associate an image point $(\xi', \eta') \in \mathbb{R}^2 \setminus \overline{\Omega}$ and set

$$z(x, y; \xi, \eta) = \frac{a}{2\pi} \log \|(x, y) - (\xi', \eta')\| + \frac{b}{2\pi}.$$

This choice guarantees that z is harmonic in Ω . Now we have to determine the constants a and b such that the condition $z = -G_0$ on $\partial \Omega$ is satisfied.

The boundary of Ω is given by $\{(x,x):x\in\mathbb{R}.$ If we define $(\xi',\eta')=(\eta,\xi)$, which is the reflection of (ξ,η) through the line y=x, then we have

$$\|(x,x) - (\xi',\eta')\| = \|(x,x) - (\eta,\xi)\| = \|(x,x) - (\xi,\eta)\|$$

for all $x \in \mathbb{R}$. This implies that the condition $z = -G_0$ on $\partial \Omega$ is satisfied when a = 1 and b = 0. Therefore, the Green's function is given by

$$\begin{split} G(x,y;\xi,\eta) &= -\frac{1}{2\pi} \log \|(x,y) - (\xi,\eta)\| + \frac{1}{2\pi} \log \|(x,y) - (\eta,\xi)\| \\ &= \frac{1}{4\pi} \log \frac{(x-\eta)^2 + (y-\xi)^2}{(x-\xi)^2 + (y-\eta)^2}. \end{split}$$

Solution of problem 8

Taking Fourier transforms gives the following ordinary differential equation:

$$\frac{d^2\widehat{u}}{dt^2} + 2\frac{d\widehat{u}}{dt} + \widehat{u} = 0.$$

The general solution is given by

$$\widehat{u}(t,k) = \widehat{a}(k)e^{-t} + \widehat{b}(k)te^{-t}.$$

From the initial conditions we obtain

$$\widehat{a}(k) = \widehat{f}(k)$$
 and $\widehat{b}(k) - \widehat{a}(k) = \widehat{g}(k)$

and thus

$$\widehat{u}(t,k) = \widehat{f}(k)e^{-t} + (\widehat{f}(k) + \widehat{g}(k))te^{-t}.$$

Taking the inverse Fourier transform gives

$$u(t,x) = f(x)e^{-t} + (f(x) + g(x))te^{-t}.$$